Activation of guanylate cyclase by superoxide dismutase and hydroxyl radical: a physiological regulator of guanosine 3',5'-monophosphate formation.

نویسندگان

  • C K Mittal
  • F Murad
چکیده

Partially purified soluble rat liver guanylate cyclase [GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2] was activated by superoxide dismutase (superoxide: superoxide oxidoreductase, EC 1.15.1.1). This activation was prevented with KCN or glutathione, inhibitors of superoxide dismutase. Guanylate cyclase preparations formed superoxide ion. Activation by superoxide dismutase was further enhanced by the addition of nitrate reductase. Although guanylate cyclase activity was much greater with Mn2+ than with Mg2+ as sole cation cofactor, activation with superoxide dismutase was not observed when Mn2+ was included in incubations. Catalase also decreased the activation induced with superoxide dismutase. Thus, activation required the formation of both superoxide ion and H2O2 in incubations. Activation of guanylate cyclase could not be achieved by the addition of H2O2 alone. Scavengers of hydroxyl radicals prevented the activation. It is proposed that superoxide ion and hydrogen peroxide can lead to the formation of hydroxyl radicals that activate guanylate cyclase. This mechanism of activation can explain numerous observations of altered guanylate cyclase activity and cyclic GMP accumulation in tissues with oxidizing and reducing agents. This mechanism will also permit physiological regulation of guanylate cyclase and cyclic GMP formation when there is altered redox or free radical formation in tissues in response to hormones, other agents, and processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reactive Oxygen Species and Natural Antioxidants: A Review

REACTIVE OXYGEN SPECIES & FREE RADICALS It is ironic that oxygen, an element indispensable for life [1], under certain situations has deleterious effects on human body [2]). Most of the potentially harmful effects of oxygen are due to the formation and activity of number of chemical compounds known as ROS, which have a tendency to donate oxygen to other substances. The causes of the poisonous p...

متن کامل

Hydroxyl radical-dependent inactivation of guanylate cyclase in cerebral arterioles by methylene blue and by LY83583.

BACKGROUND AND PURPOSE Methylene blue and 6-anilino,5,8-quinolinedione (LY83583) are used extensively to block activation of guanylate cyclase. Both agents generate oxygen radicals. Therefore, it appeared profitable to investigate whether the generation of oxygen radicals by these agents is responsible for the blockade of responses to nitrodilators that act via activation of guanylate cyclase t...

متن کامل

N-hydroxylamine is not an intermediate in the conversion of L-arginine to an activator of soluble guanylate cyclase in neuroblastoma N1E-115 cells.

This study evaluates the role of N-hydroxylamine (NH2OH) in activating soluble guanylate cyclase in the mouse neuroblastoma clone N1E-115. It has been proposed that NH2OH is a putative intermediate in the biochemical pathway for the generation of nitric oxide (NO)/endothelium-derived relaxing factor (EDRF) from L-arginine. NH2OH caused a time- and concentration-dependent increase in cyclic GMP ...

متن کامل

Stimulation of soluble guanylate cyclase by superoxide dismutase is mediated by NO.

Soluble guanylate cyclase (sGC), which is found in many cells and tissues, represents the receptor for the intra- and intercellular messenger molecule NO. Superoxide dismutase (SOD), an enzyme involved in the degradation of toxic superoxide radicals, has been proposed as a non-NO activator of sGC. Here we show that SOD stimulated sGC purified from bovine lung up to 10-fold. Activation by SOD wa...

متن کامل

Tumor necrosis factor-alpha-induced activating protein-1 activity is modulated by nitric oxide-mediated protein kinase G activation.

We tested the hypothesis that protein kinase (PK)G activation in response to nitric oxide ((*)NO) mediates tumor necrosis factor (TNF)-alpha-induced activation of the transcription factor activating protein-1 (AP-1) in pulmonary microvessel endothelial monolayers (PEM). The DNA-binding activity of AP-1 was assessed using the electrophoretic mobility shift assay. TNF treatment (1,000 U/ml) for 4...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 74 10  شماره 

صفحات  -

تاریخ انتشار 1977